Expression of sodium channels Nav1.2 and Nav1.6 during postnatal development of the retina.

نویسندگان

  • Audra Van Wart
  • Gary Matthews
چکیده

During the second and third postnatal weeks, there is a developmental switch from sodium channel isoform Na(v)1.2 to isoform Na(v)1.6 at initial segments and nodes of Ranvier in rat retinal ganglion cells. We used quantitative, real-time PCR to determine if the developmental appearance of Na(v)1.6 channels is accompanied by an increase in steady-state level of Na(v)1.6 mRNA in the retina. Between postnatal day 2 (P2) and P10, Na(v)1.6 levels did not change, but between P10 and P19, there was an approximately three-fold increase in Na(v)1.6 transcript levels. This coincides with the appearance of Na(v)1.6 channels in the retina and optic nerve. The steady-state level of Na(v)1.2 mRNA also increased during this same period, which suggests that the rise in Na(v)1.6 may be part of a general increase in sodium channel transcripts at about the time of eye opening at P14. The results are consistent with a developmental increase in steady-state transcripts giving rise to a corresponding increase in sodium channel protein expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination.

Myelinated fibres are characterized by the aggregation of Nav1.6 sodium channels within the axon membrane at nodes of Ranvier, where their presence supports saltatory conduction. In this study, we used immunocytochemical methods to study the organization of sodium channels along axons in experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis. We studied axons within the op...

متن کامل

Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger.

Although voltage-gated sodium channels are known to be deployed along experimentally demyelinated axons, the molecular identities of the sodium channels expressed along axons in human demyelinating diseases such as multiple sclerosis (MS) have not been determined. Here we demonstrate changes in the expression of sodium channels in demyelinated axons in MS, with Nav1.6 confined to nodes of Ranvi...

متن کامل

Organization and Plasticity of Sodium Channel Expression in the Mouse Olfactory and Vomeronasal Epithelia

To understand the molecular basis of neuronal excitation in the mammalian olfactory system, we conducted a systematic analysis of the organization of voltage-gated sodium (Nav) channel subunits in the main olfactory epithelium (MOE) and vomeronasal organ (VNO) of adult mice. We also analyzed changes in Nav channel expression during development in these two systems and during regeneration of the...

متن کامل

Molecular identity of axonal sodium channels in human cortical pyramidal cells

Studies in rodents revealed that selective accumulation of Na(+) channel subtypes at the axon initial segment (AIS) determines action potential (AP) initiation and backpropagation in cortical pyramidal cells (PCs); however, in human cortex, the molecular identity of Na(+) channels distributed at PC axons, including the AIS and the nodes of Ranvier, remains unclear. We performed immunostaining e...

متن کامل

Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav) subunits by real time polymerase chain reaction (PCR) in the anterior ci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience letters

دوره 403 3  شماره 

صفحات  -

تاریخ انتشار 2006